## EXOPLANETS

Planets orbiting other suns

## The Nobel Prizes in Physics 2019

James Peebles
"for theoretical discoveries in physical cosmology"
Michel Mayor and Didier Queloz
"for the discovery of an exoplanet orbiting a solar-type star"


Peebles
Mayor


Queloz

## National Academy of Sciences:

Mayor and Queloz revolutionized our understanding of planetary science, led to the discovery of thousands of exoplanets, and spurred the search for extraterrestrial life in the universe


## Extraterrestrial planets and planetary systems



People have been searching for life on other planets since Galileo, in the $16^{\text {th }}$ Century, pointed his telescope toward the stars and discovered moons circling other planets.

His contemporary, the Dominican friar Giordano Bruno, wrote:


In space there are countless constellations, suns and planets; we see only the suns because they give light; the planets remain invisible, for they are small and dark. There are also numberless earths circling around their suns...

First exoplanet: 51 Pegasi b called 51 Peg in the constellation Pegasus
Discovered: July, 1995 from Earth
50.5 light-years away (one light year = six trillion miles)

Gas giant -- half the mass of Jupiter -- same radius
Thick, blown-up atmosphere containing silicates


First exoplanet: 51 Pegasi b called 51 Peg in the constellation Pegasus
Discovered: July, 1995 from Earth
50.5 light-years away (one light year = six trillion miles)

Gas giant -- half the mass of Jupiter -- same radius
Thick, blown-up atmosphere containing silicates
Orbital period: 4.23 days (locked orbit )
Mercury, closest to our Sun ( 36 million miles), orbits the Sun in 88 days

Distance from its sun: 5 million miles
Surface temperature: 1850 F (Mercury = 800 F)

## Detection method: radial-velocity or star "wobbling"

Mayor and Queloz were able to detect a wobble of only 30 miles per hour -- using the Doppler shift of light.

## Doppler shift of star's (S) light as planet (P) orbits it



Observer


## EXOPLANETS Planets orbiting other suns

To see exoplanets well, we need to go above Earth's atmosphere. The best telescopes are:


Hubble Space Telescope.
Launched 1990. Has given us new insight into the Universe and fabulous space images

Spitzer Infrared Telescope launched 2003 and just retired. Saw dust and stars not visible to the eye (seen in infrared light)


Kepler Space Telescope launched 2009, retired 2017. Designed to find exoplanets. Observed over . 5 million stars and found 2,662 exoplanets

TESS - Transiting Exoplanet Survey Satellite - launched in 2018 to replace Kepler. Designed to search approximately 200,000 nearby stars for exoplanets and planetary systems

Kepler and Tess use the eclipse (transit) method to find a planet:

$77 \%$ of all exoplanets have been found this way

Spitzer measured the infrared light coming from a star, then star and planet pair, then planet only:

## Star + Planet



Combined Spectrum

Star


Eclipse Spectrum

## Planet



Planet Spectrum

As of June 2020 the space telecopes have found:

* 4,171 exoplanets $+4,562$ unconfirmed
* 3,079 star systems with one to eight planets
* 60+ two-star systems with one planet
* 20+ three-star systems with one planet
* 4 three-star systems with three planets
* 2 three-star systems with FIVE planets
* 2 four-star systems with one planet

Nearest exoplanet and nearest neighbor: Proxima Centauri b, an Earth-sized planet which orbits its host star Proxima Centauri in 11 days. 4.2 light-years away

The habitable zone around a star is where an Earth-like planet can have liquid water and possibly support life as we know it.

- Mercury's Orbit

Period: 88 days
Mass = 6\% of Earth


Mass: $\quad 0.12$ solar masses
Luminosity:
Rotation period:
Temperature: 2800 Celsius
Distance to Earth: 4.23 light-years

Surface temperature of Sun about 10,000 F

Surface temperature of Proxima Centauri = 4,500 F. Proxima Centauri is a red dwarf star

## What is needed for life?

An Earth-like planet, i.e., rocky surface, atmosphere, a magnetic field, and water


Some 40 billion Earth-sized, Earth-like planets orbit in the habitable zones of Sun-like stars in the Milky Way

But human-like life has occupied only $1 / 10000$ of life of sun

## EXOPLANETS

A planet orbiting another sun
Characteristics

## 4171 Confirmed Exoplanets

## Terrans



Ca. 2/3 are giants

Giants


Jovian
Jupiter-size


## The Periodic Table of Exoplanets

Over 3800 Exoplanets July, 2018


Ca. 300 more exoplanets have been confirmed as of June 2020

|  | $\bigcirc$ | B | A | F | $G$ | K | M |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 70000 \mathrm{~F} \\ & 40000 \end{aligned}$ | $\begin{array}{r} 26000 \mathrm{~F} \\ 15000 \end{array}$ | $\begin{gathered} 14300 \mathrm{~F} \\ 8200 \end{gathered}$ | $\begin{gathered} 11400 \mathrm{~F} \\ 6600 \end{gathered}$ | $\begin{gathered} 10000 \\ 5800 \end{gathered}$ | $\begin{gathered} 7300 \mathrm{~F} \\ 4300 \end{gathered}$ | $\begin{array}{r} 5500 \mathrm{~F} \\ 3300 \end{array}$ |
| 100 |  |  |  |  |  |  |  |
| $\frac{1}{100}$ |  |  |  |  | \% | $\Theta$ | \% |
| Radius | 20 | 4 | 2 | 1.2 | 1 | 0.7 | 0.3 |
| Mass | 40 | 7 | 2 | 1.3 | 1 | 0.8 | 0.2 |

## K stars: The optimal host stars for planets

K stars: Surface temperatures 7000F good for habitability Radiation: 5-25 x Sun (not good) $13 \%$ of total number of stars in our Galaxy

The Solar System (not to scale)


## Kepler-62 System

Five-planet system about 1,200 light-years from Earth in the constellation Lyra (the Lyre)

Orbiting a K2* dwarf star (orange)

## Kepler-62 System, cont.

* Five-planet system about 1,200 light-years from Earth in the constellation Lyra (the Lyre)
* Orbiting a K2 dwarf star about 7000 F
$2 / 3$ of Sun's mass
* Two planets, Kepler-62f and Kepler-62e, in habitable zone (the region around a star in which an Earth-like planet can possess liquid water and possibly support life)
* Kepler-62f is 40\% and Kepler-62e is 60\% larger than Earth


## Kepler-62 System

Five planets

## 1,200 light-years away



## Kepler-69 System

* Two-planet system about 2,700 light-years from Earth in the constellation Cygnus (the Swan)

Cygnics

* Orbiting a G star like our Sun, about 10,000 F
* One planet, Kepler-69c barely in the habitable zone
* Kepler-69c is 70\% larger than the Earth



## Kepler-69 System



Planetssandoórbitisctocscale
Solar System

## Kepler-186

5 planets, 4 very close to the M star (3000 F) 500 light-years away


1,400 light-years one planet Kepler-452 System

Kepler-186
System

500 light-years away 5 planets, 4 very close to the M star

Mass: 5 x Earth Orbit: 385 days

Kepler-452b


130 days

## Kepler-47 System

**Two planets orbiting two stars**

Discovery Alert: A T Planet in Kepler-47 System
Habitable Zones
Solar System

Kepler-47 b
Kepler-47 c

Plänetssandi orbits tossade

Kepler 16b: A planet orbiting TWO stars


NASA's Kepler Mission Discovers Planet Orbiting Two Stars


# Kepler-90 System Planet Sizes <br> (Artist's Concepts) 


*A Solar System copy solar System


Planet sizes to scale distances not
Kepler-90 is an eight planet system, discovered in 2013, 2,544 light-years away. Last planet found in Dec. 2017

## Kepler-90 Planets Orbit Close to Their Star

Star 1.2 times mass of sun
Kepler-90 System Inner Solar System


The inner planets have extremely tight orbits with a "year" on Kepler-90i lasting only 14.4 days. In comparison, Mercury's orbit is 88 days. Kepler-90i has an average surface temperature of 800 degrees $F$

## Could Kepler-90 Have More Planets?

Kepler-90 System

Searched by Kepler

Not searched by Kepler


Absolutely!

The Kepler-160 Planetary System, discovered 2010 (+2014) 3,141 light years away

Two planets:
The star Kepler-160: almost same size and luminosity as our Sun (9500 F)

Planet b:
Potentially rocky
$3 \times$ mass of Earth
$1.5 \times$ radius of Earth
Orbital period: 3.4 days
A hot hell


Planet c:
Gas giant-
$13 \times$ mass of Earth
$3 \times$ radius of Earth
Orbital period: 13.7 days
A hot hell

## Kepler used the eclipse (transit) method to find the planets



The Kepler-160 Planetary System: 2020, two more planets!

Planet e:<br>*Potentially rocky<br>*Habitable zone<br>*1.9 x radius of Earth<br>*Orbital period: 378 days<br>*Earth-like temperature atmosphere, water, 42 F



Planet d:
$1-100 \times$ mass of Earth
Orbital period: 7-50 days non-transiting
*One of the most amazing planetary systems yet:*

TRAPPIST-1: a stellar system with 7 planets 40 light-years away

Discovered Feb. 2017


TRAPPIST-1 is an ultra cool red dwarf star
Age: between 5.4 and 9.8 billion years
Temperature: 4200 F (Sun = 10,000 F)
Mass: 8\% of Sun


## TRAPPIST = TRAnsiting Planets and Planetesimals

 Small Telescope in Chile. ALSOa Belgian controlled telescope associated with the famous Trappist beer, which the astronomers who discovered the planetary system

N.B. Also available with Trappist fruit cake.

## TRAPPIST 1 Planetary system



The TRAPPIST-1 solar system: 7 terrestrial planets $b, c, e, f, g$ are same size as Earth, e, f, g are within the habitable zone. All the planets are closer to TRAPPIST-1 than

## Sun to Mercury

4200 F


Orbital period (length of "year"):
$b=1.5$ days, $c=2.4, d=4.5, e=6.1, f=9.2, g=12.4, h=18.77$ Rotation period: same as "year" (the rotation is locked). Always face the same side toward sun



Voted best "Hab zone" vacation within 40 light years of Earth

## TRPPPIST-|F

12 PARSECS AWAY FROM THE SOLAR SYSTEM

SIF SMADOWS SYAM THE DISTANCE PETWEN WORIDS AS ONE PLANET ECIMES THE SEM FROM AMOTHER.


## EXOPLANETS

Exoplanet: A planet orbiting another sun What have we seen? How are they found?

Characteristics
How do planets form?

## PLANETABY STANDARD MODEL

The conventional planetary-formation theory explains how our Solar System developed more than 4.6 billion years ago.

## IGNITION

The cloud swirls into a flat, spirining disk with a dense blob in the centre. Temperatures and pressures at its core trigger thermonuclear fusion, and the blob begins to shine as a star.

## CONTRACTION

Planets are thought to form along with their stars - a process that starts with a cloud of interstellar hydrogen and helium contracting because of its own gravity.

The Solar System is filled with "leftovers" from the formation of our Planetary System


The Itokawa asteroid, 1,100 feet in diameter, is located in the Asteroid Belt. The Japanese spacecraft probe (Hayabusa) landed on the asteroid 13 June 2019


Ultima Thule: the farthest and most primitive object ever explored. It is located in the Kuiper Belt


Called a contact binary, 22 miles long, 4 billion miles away

Hubble image of region around HL Tauri, a young star surrounded by a proto-planetary disk 450 light-years away.

The Planetary accretion disk in HL Tauri photographed (!!) with ALMA (Atacama Large Millimeter Array) in Chile

Surprise!
HL Tauri is only about
1 million years old, and
was thought to be much too young to have planets already forming around it


Solar System

HL Tauri

Comparison of the Solar System with HL Tauri and its surrounding proto-planetary disk. Although HL Tauri is much smaller than the Sun, the disk stretches out to almost three times as far from the star as Neptune is from the Sun.

TW Hydra, 10 mill. year old proto-star with protoplanetary disk, showing planet formation

Star is still contracting and is too young to have started fusion burning hydrogen

Zooming in on the newly formed dwarf star PDS 70, 370 light-years from Earth, and its planet, located ca. 1.8 billion miles from the central star, roughly equivalent to the distance between Uranus and the Sun.

PDS 70b is a giant gas planet with a mass a few times that of Jupiter. The planet's surface has a temperature of around $1800^{\circ} \mathrm{F}$, making it much hotter than any planet in our own Solar System. Surface temperature on Uranus is -370 ${ }^{\circ}$ F.


