

Same Melody in 26 Different Genres

Trevor Hamer ca 2019

An Ear for Music

Session 1
Building Blocks

OLLI at Illinois Spring 2024

D. H. Tracy

An Ear for Music

Session 1 Building Blocks

OLLI at Illinois Spring 2024

D. H. Tracy

What Colors Can We Distinguish?

What Colors Can We Distinguish?

3/1/24

Ear for Music 1

What Colors Can We Distinguish?

So, we Humans have a rather profound Color Blindness.

Are we also "Sound Deaf"?

Are there very different Musical Sounds that we can *hear* perfectly well, but cannot *distinguish*?

What Sounds *Can* We Distinguish?

What Sounds Can We Distinguish?

Another Comparison

12

All 4 are Very Different Sounds

3/1/24

13

Course Outline

1. Building Blocks: Some basic concepts

- 2. Resonance: Building Complex Sounds
- 3. Hearing and the Ear
- 4. Musical Scales and Musical Notation
- 5. Musical Instruments: Strings and Timbre
- 6. Musical Instruments: Pipes
- 7. Human Voice and Singing
- 8. Harmony and Dissonance; Chords

Question Times

- Halfway Through
- At the End

Session 1 Outline: Building Blocks

Jargon

- We'll try to avoid Jargon (as much as possible)
- Music has a very long history
 - Vocabulary, concepts, notation, even instruments have deep roots
 - Lots of baggage...Legacy terminology
 - Potential for obscuration or confusion!

Building Blocks

Books

Scientists
and
Musicians

More Books

3/1/24 Ear for

SmartPhone Apps

iOS CIOFCUD

Advanced Spectrum
Analyzer Pro

In App Store, search for "Audio Analyzer"

Ear for Music 1

3/1/24

21

Free for

Android

and iOS

FFT Wave

Building Blocks

• Rhythm

Elements of Music

Rhythm

Melody

Tchaikovsky Swan Lake Easy Notes Sheet Music for Violin Flute Oboe

- Rhythm
- Melody
- Harmony

- Rhythm
- Melody
- Harmony

- Rhythm
- Melody

Harmony

- Rhythm
- Melody
- Harmony

3/1/24

Rhythm

Melody

Harmony

- Rhythm
- Melody
- Harmony

Tchaikovsky: Swan Lake Theme (A minor)

Tonality

Building Blocks

Sound Waves in Air

34

3/1/24 Institute of Sound & Vibration Research, Southampton Univ.

Sound Waves in Air

Air molecules move back and forth along direction of wave propagation

Longitudinal Wave

elocity:

000 ft/sec (300 m/s)

Air Pressure bobs up and down as waves pass by any point

<1 millionth of an atmosphere right now

3/1/24

Institute of Sound & Vibration Research, Southampton Univ.

Reflection of Sound Waves

3/1/24

r for Music 1

36

Reflection of Sound Waves

Sound Wave Diffraction

Building Blocks

Types of Sound Waves

Sine Waves Characterized by Frequency

Sine Waves Characterized by Frequency

Sine Waves Characterized by Frequency

Sine Waves

Sine Waves Characterized by Frequency

Sine Waves Characterized by Wavelength

3/1/24

Sine Waves Characterized by Wavelength

Sine Waves Characterized by Wavelength

Building Blocks

Complex tones

- Fundamental frequency f_0

- Several (or many) higher frequencies (Overtones or Partials)
 - Usually multiples of f_{θ} called **Harmonics**

Complex tones

- Fundamental frequency f_0

- Several (or many) higher frequencies (Overtones or Partials)
 - Usually multiples of f_{θ} called **Harmonics**

Musical Instruments and Nature Rarely Make Pure Sine Waves

Building Blocks

Building Blocks

Visualization of Sound

Two main approaches:

Waveform Display

Spectrum Display

Visualization of Sound: Spectrum

- Remember how our complex waveform was built of sinusoidal harmonics?
- We could just list the constituent Partials:

Partial #	Frequency (Hz)	Amplitude
1	200	100%
2	400	71%
3	600	40%
4	800	35%
5	1000	16%
6	1200	18%
7	1400	6%

Visualization of Sound: Spectrum

- Remember how our complex waveform was built of sinusoidal harmonics?
- We could just list the constituent Partials:

Partial #	Frequency (Hz)	Amplitude
1	200	100%
2	400	71%
3	600	40%
4	800	35%
5	1000	16%
6	1200	18%
7	1400	6%

Two main approaches:

Waveform Display

Spectrum Display

Visualization of Sound

3/1/24

Visualization of Sound

Two main approaches:

Waveform Display

Spectrum Display

Alternate Spectrum Presentation So, sometimes
Frequencies are
shown vertically

What Sounds *Can* We Distinguish?

Remember our Trumpet?

We can visualize
the Waveform and
Spectral Content using
free Software

What Sounds *Can* We Distinguish?

What Sounds Can We Distinguish?

And this one?

What Sounds Can We Distinguish?

A *tiny* bit Different

3/1/24

3/1/24

72

None! But they're not remotely similar waveforms

Building Blocks

Superposition of Sound Waves

- Waves pass through one another without disruption
- Where they overlap, **Superposition** applies:
 - --Pressures add up

Superposition of Sound Waves

- Waves pass through one another without disruption
- Where they overlap,
 Superposition applies:
 --Pressures add up

Superposition of Sound Waves

 Waves pass through one another without disruption

Where they overlap, **Superposition** applies:

--Pressures add up

Building Blocks

Phase: Delayed Waves

 Phase refers to time shifts between waves of the <u>same</u> or <u>similar</u> frequency

Phase: Delayed Waves

- Phase refers to time shifts between waves of the <u>same</u> or <u>similar</u> frequency
- Measured in Degrees 360° = Full Cycle

...then look at copies of the same wave shifted slightly in time, i.e. delayed

3/1/24

Ear for Music 1

81

Blue wave (moving left) and

Green wave (moving right)

Add up to Red wave (standing)

at a moment when the blue and green are almost in phase (10 deg apart)

10°

← Blue wave and
Green wave ⇒

Add up to Red wave

90°

180°

this is at a moment when the blue and green are opposite in phase (180 deg apart), so the sum Red is flat zero!

Blue wave and
Phase-Shifted Green wave
Add up to Red wave

10°

Blue wave and Phase-Shifted Green wave Add up to Red wave

Demo

Constructive Interference

10°

Blue wave and Phase-Shifted Green wave Add up to Red wave

Demo Failed Due to Signal Generator Failure

180°

Blue wave and
Phase-Shifted Green wave
Add up to Red wave

 \boldsymbol{f}_1

Lower

f ,

Two slightly different frequencies sometimes constructively interfere and sometimes cancel each other out

Higher Frequency

Lower Frequency

Higher Frequency

Lower Frequency

Another Example:

3 Simultaneous Tones:

440 Hz

441 Hz

443 Hz

The Octave: Doubling the Frequency

- Doubling or Halving the Frequency has special significance in all musical traditions.
- A musical Note and its Octave (i.e. double f) sound especially good together.

2:1 is the most harmonious ratio

If a Note with Fundamental Frequency f
exists in a musical tradition,
then so does its Octave 2f.

The Octave: Doubling the Frequency

The Octave: Remembering It

↑ 2x -where

Some

3/1/24

ar for Music

101

The Octave: Remembering It

G3-> G4

Course Outline

111

1. Building Blocks: Some basic concepts

- 2. Resonance: Building Complex Sounds
- 3. Hearing and the Ear
- 4. Musical Scales and Musical Notation
- 5. Musical Instruments: Strings and Timbre
- 6. Musical Instruments: Pipes
- 7. Human Voice and Singing
- 8. Harmony and Dissonance; Chords