

Sound of Music How It Works

Session 3 Hearing Music and the Ear

OLLI at Illinois Spring 2020

Endlessly Downward Beatsystem emt 5595 (1995)

D. H. Tracy

Sound of Music How It Works

Session 3 Hearing Music and the Ear

> OLLI at Illinois Spring 2020

> > D. H. Tracy

Course Outline

- 1. Building Blocks: Some basic concepts
- 2. Resonance: Building Musical Sounds
- 3. Hearing Music and the Ear
- 4. Musical Scales
- 5. Musical Instruments
- 6. Singing and Musical Notation
- 7. Harmony and Dissonance; Chords
- 8. Combining the Elements of Music

OLLI-Vote 2020 Wands

Human Ear

The Middle Ear

2/11/2020

The Inner Ear

Ear Video

Brandon Pletsch (2002) Medical College of Georgia

Detailed Look at the Cochlea

Another Cartoonish look at ear....

Ear Video

"Journey of Sound to the Brain" NIH - 2017 [Wikimedia]Cochlea]

Detailed Look at the Organ of Corti

Ear

Video

Detailed Look at the Organ of Corti

Detailed Look at the Organ of Corti

Tectorial Membrane Peeled Back

Electron Micrographs of Guinea Pig Organ of Corti [Prof. Andrew Forge]

Severe Damage

Intact cochlea

Damaged cochlea

Outer Hair Cells Shake the Tectorial Membrane

Dancing Outer Hair Cell with Stereocilia

Isolated Guinea Pig Outer Hair Cell with Patch Clamp

J. Santos-Sacchi Yale University

Unrolling the Cochlea

Unrolling the Cochlea

Sound of Music 3

Traveling Wave on Basilar Membrane

Traveling Wave on Basilar Membrane

Dancing Outer Hair Cells to the Rescue

Dancing Outer Hair Cells to the Rescue

Critical Bands

- \approx **25** bands across audible spectrum
- \approx 1.3 mm wide along Basilar Membrane
- \approx 150 Inner Hair Cells within a band
- Each Inner Hair Cell belongs to a Critical Band
- Frequency range of bands varies:
 - $\circ \approx 100$ Hz at low frequencies
 - \approx 3000 Hz at high end 0
- Important for understanding Harmony

de Kleine et al JASA (2000)

SOAE is Similar to PA System Squeal...

Positive Feedback in an Amplified Loop

Transient Evoked OtoAcoustic Emission (TEOAE)

- "Click" Stimulus evokes delayed emission
- Works on everyone
- Routine baby screen for ear function
- Very High signal no need for quiet booth

partly Hermann Helmholtz had it mostly right

Hair Cells Fire Near Sound Wave Peak

For Low frequencies (50-300 Hz):

Hair Cells Fire Near Sound Wave Peak

For Medium Frequencies (500-5000 Hz):

Sound				\bigwedge	\bigwedge	\bigwedge				
	↓ ↓	↓	↓	↓	↓	↓	↓ ·	↓	↓ ·	↓ ·
Neuron 1										
Neuron 2										
Neuron 3										
Neuron 4								-		
Total Response										

Volley Theory: (Ernest Wever 1939) Multiple nearby hair cells <u>taken together</u> can send a spike on every cycle

The Decibel Scale of Sound Pressure Level

Sound of Music 3

Equal Loudness Contours (ISO 226:2003)

Hearing Threshold Drops with Age

(Edited)

A Day in The Life...

1967

10000

15000 20000 Hz

35

Two Approaches to Understanding Musical Sound Perception

ORK TIMES BESTSELLE dlessly stimulating Oliver Sacks, MD THISIS YOUR BRAIN **ON MUSIC** he Science of nan Obsession author of The Organized Mind DANIEL J. LEVITI

- 1. Follow the neurons from the ears onward
 - Bottom up

2. Look at the final perceptions of sound

- Top down

These approaches have yet to meet! Spoiler Alert:

3D Anatomy of **Mouse Brain**

Motta et. Al. Max Planck Inst. for Brain Research (Nov 2019)

Reconstruction of All 89 Neurons (with axons) Tiny Cube from Mouse somatosensory cortex 5 Example Neurons

with axons

34,221 Axons Total length 2.7m

43

10µm

Using 2 Ears: Sound Localization in Superior Olive

Vertical Sound Localization via Frequency Notches in White Noise

Example of 3D Auditory Neural Spatial Organization:

Gerald Langner, The Neural Code of Pitch and Harmony (2015)

≈ 30 Planar Layers,
each receiving input
from a narrow
section of the
Basilar Membrane

i.e., small frequency ranges à la the ~25 Critical Bands!

OLLI-Vote 2020 Wands

Can We Hear Phases?

Fixed Harmonic Phases

Hear the Difference?

C4

[262 Hz]

Random Harmonic Phases

What If We Combine Lots of Pure Tones?

Spectrograms for 1001 Tones

1 Phases: Random

2 Phases: In Phase at Center

3/2/2017

Hear All About It

So Why Can We Detect Phase in One Case ... and Not the Other?

It's the Basilar Membrane, Stupid

Missing Harmonic Hardly Noticed...

Pitch vs. Frequency in Complex Tones

August Seebeck (1805-1849) Technische Universität Dresden

For Simple sine wave tones, Pitch *is* directly determined by Frequency

Question:

For Complex Tones, is Perceived musical Pitch determined simply by the **Fundamental** .. or Lowest Frequency Component?

or, is Pitch something quite different?

Georg Simon Ohm (1789-1854) Polytechnic School of Nuremburg

Pitch vs. Frequency in Complex Tones

August Seebeck (1805-1849) Technische Universität Dresden

For Simple sine wave tones, Pitch *is* directly determined by Frequency

Georg Simon Ohm (1789-1854) Polytechnic School of Nuremburg

Pitch vs. Frequency in Complex Tones

August Seebeck (1805-1849) Technische Universität Dresden

For Simple sine wave tones, Pitch *is* directly determined by Frequency

Question:

For Complex Tones, is perceived musical Pitch determined simply by the Fundamental or Lowest Frequency component?

or, is Pitch something quite different?

Georg Simon Ohm (1789-1854) Polytechnic School of Nuremburg

Herman von Helmholtz (1821-1894)

The Strange Case of the Missing Fundamental

The Strange Case of the Missing Fundamental

2/11/2020

The Strange Case of the Missing Fundamental

Same perceived pitch, although different Timbre

Phase Scramble

Hear the Difference?

Phase Scrambled + Missing Fundamental

2/11/2020

Sound of Music 3

Missing Fundamental in a **Complete Melody**

undamental

2/11/2020

Absolute Pitch

Ability to quickly and accurately name the Pitch of a complex tone

- Fairly rare 1 in 10,000 estimate in general population
- Not to be confused with Relative Pitch
- Odds go up if you
 - are musically trained (up to 4%)
 - were exposed to intensive musical training as a young child
 - have a tonal first language (e.g. Chinese, Vietnamese)
 - are on the autism spectrum
 - are named Mozart or John Phillip Sousa
 - are Synesthetic
- Many non-musicians have good pitch recall

Pitch Perception Test

Tone Pairs	Pair 1	Pair 2	Pair 3	Pair 4
Test A (pure tones)				\rightarrow
Test B (pure tones)				
Test C (complex tones)				
Test D (complex tones)				

Spectrogram of Test A

Frequency (Hz)

Pitch Perception Test

Tone Pairs	Pair 1	Pair 2	Pair 3	Pair 4
Test A (pure tones)	1	\downarrow	1	\checkmark
Test B (pure tones)				
Test C (complex tones)				
Test D (complex tones)				

Spectrogram of Test B

Frequency (Hz)

68

Pitch Perception Test

Tone Pairs	Pair 1	Pair 2	Pair 3	Pair 4
Test A (pure tones)	1	\downarrow	1	\downarrow
Test B (pure tones)	1	\downarrow	\checkmark	1
Test C (complex tones)				
Test D (complex tones)				

Spectrogram of Test C

2/11/2020

Frequency (Hz)

Sound of Music 3

Pitch Perception Test

Tone Pairs	Pair 1	Pair 2	Pair 3	Pair 4
Test A (pure tones)	1	\downarrow	1	\checkmark
Test B (pure tones)	1	\downarrow	\checkmark	1
Test C (complex tones)	\downarrow	1	\checkmark	1
Test D (complex tones)				

Diana Deutsch's Tritone Paradox

Diana Deutsch's Tritone Paradox

and

Continuity Illusion

Shepard-Risset Glissando

2/11/2020

Shepard-Risset Glissando

Risset's Accelerando

Jean-Clause Risset (1938-2016) Composer, Bell Labs

1

Risset's Accelerando

Course Outline

- 1. Building Blocks: Some basic concepts
- 2. Resonance: Building Sounds

3. Hearing Music and the Ear

- 4. Musical Scales
- 5. Musical Instruments
- 6. Singing and Musical Notation
- 7. Harmony and Dissonance; Chords
- 8. Combining the Elements of Music

