

Тон Шепарда (Shepard's Tone) Rabbit Killer (2019)

An Ear for Music

Mandelbrot Fractals from "Fire & Ice", Maths Town (2017)

Session 3 Hearing and the Ear

OLLI at Illinois Spring 2024

D. H. Tracy

Shepard/Penrose Mix-2 JHFreeland (2009)

An Ear for Music

Session 3 Hearing and the Ear

> OLLI at Illinois Spring 2024

> > D. H. Tracy

Spectrogram of Shepard/Penrose Mix-2

Course Outline

- 1. Building Blocks: Some basic concepts
- 2. Resonance: Building Complex Sounds
- 3. Hearing and the Ear
- 4. Musical Scales
- 5. Musical Notation; String Instruments
- 6. Timbre and Pipe Instruments
- 7. Human Voice and Singing
- 8. Harmony and Dissonance; Chords

OLLI-Vote Wands

3/15/24

Human Ear

Brandon Pletsch (2002) Medical College of Georgia

Detailed Look at the Cochlea

Another Cartoonish look at ear....

"Journey of Sound to the Brain" NIH - 2017

[Wikimedia|Cochlea]

Detailed Look at the Organ of Corti

Tectorial Membrane Peeled Back

SEM Images by Andrew Forge Univ. College London

Not touching

Tectorial

Severe Damage

Intact cochlea

Damaged cochlea

Outer Hair Cells Shake the Tectorial Membrane

Georg von Békésy Nobelist Physiology 1961

endolymph

cochlear duct section

basilar membrane

cochlear fluid

Howard Hughes Medical Institute

"Traveling Wave" on Basilar Membrane

But Something Magic Happens in Live Cochlea...

Dancing Outer Hair Cell with Stereocilia

Isolated Guinea Pig Outer Hair Cell with Patch Clamp

J. Santos-Sacchi Yale University

Dancing Outer Hair Cells to the Rescue

Dancing Outer Hair Cells to the Rescue

Critical Bands

- ≈ **25** bands across audible spectrum
- \approx 1.3 mm wide along Basilar Membrane
- \approx 150 Inner Hair Cells within a band
- Each Inner Hair Cell belongs to a Critical Band
- Frequency range of bands varies:
 - $\circ \approx$ 100 Hz at low frequencies
 - $~\circ~~\approx$ 3000 Hz at high end
- Important for understanding Harmony

Pushing **Stereocilia** over opens <u>mechanical</u> valves, letting ions enter

Ear for Music 3

Pushing **Stereocilia** over opens <u>mechanical</u> valves, letting ions enter

> Gregory Frolenkov (PLoS Bio 2013)

K⁺

Ear for Music 3

Ca++

K⁺ Ca⁺⁺

Tip Links

Ca⁺⁺ K⁺

Mozaffari et al (2022)

How Hearing Happens - Cornell Video

1 hour Lecture

James Hudspeth (2010)

de Kleine et al JASA (2000)

SOAE is Similar to PA System Squeal...

Transient Evoked OtoAcoustic Emission (TEOAE)

- "Click" Stimulus evokes delayed emission
- Works on everyone
- Routine baby screen for ear function
- High signal no need for quiet booth

partly Hermann Helmholtz had it mostly right

Hair Cells Fire Near Sound Wave Peak

For Low frequencies (50-300 Hz):

Sound

Hair Cells Fire Near Sound Wave Peak

For Low frequencies (50-300 Hz):

Sound	\bigwedge	\frown	\bigwedge	\bigwedge						
	1	1		1	1					
Neuron 1										
Neuron 2										
Total Response										

Hair Cells Fire Near Sound Wave Peak

For Medium Frequencies (500-5000 Hz):

Sound	\bigwedge	\bigwedge				\bigwedge	\bigwedge			
	↓ ·	↓	↓	¥	¥	↓	¥	↓	¥	↓ ·
Neuron 1										
Neuron 2										
Neuron 3										
Neuron 4								T		
Total Response						1				

Volley Theory: (Ernest Wever 1939) Multiple nearby hair cells <u>taken together</u> can send a spike on every cycle

Question Time

- How the Ear Works
- Hair Cells
- Basilar Membrane

The Decibel Scale of Sound Pressure Level

Ear for Music 3

Equal Loudness Contours (ISO 226:2003)

Hearing Threshold Drops with Age

Volt mete Freq met

Wave Ge

THD view THD+No

ZRLC me

48

Two Approaches to Understanding Musical Sound Perception

ORK TIMES BESTSELLE dlessly stimulating Oliver Sacks, MD THISIS YOUR BRAIN **ON MUSIC** he Science of nan Obsession author of The Organized Mind DANIEL J. LEVITI

- 1. Follow the neurons from the ears onward
 - Bottom up

of sound

2. Look at the final perceptions

- Top down

These approaches have yet to meet! Spoiler Alert:

Ear for Music 3

Ear for Music 3

Using 2 Ears: Sound Localization in Superior Olive

Example of 3D Auditory Neural Spatial Organization: Small region in Cat Inferior Colliculus

Gerald Langner, The Neural Code of Pitch and Harmony (2015)

≈ 30 Planar Layers,
each receiving input
from a narrow
section of the
Basilar Membrane

i.e., small frequency ranges à la ~25 Critical Bands!

Example of 3D Auditory Neural Spatial Organization:

Gerald Langner, The Neural Code of Pitch and Harmony (2015)

 \approx **30** Planar Layers, each receiving input from a narrow section of the **Basilar Membrane**

> i.e., small frequency ranges à la ~25 Critical Bands!

Remember: Real Musical Notes are not Pure Sine Waves

Can We Hear Phases?

WaveGen

C4

[262 Hz]

Fixed Harmonic Phases

NUMBER OF THE STATE

Random Harmonic Phases

Hear the Difference?

What *Alien* Sounds *Can* We Distinguish?

What If We Combined Lots of Pure Tones?

What If We Combined Lots of Pure Tones?

Spectrograms for 1001 Tones

1 Phases: Random

2 Phases: In Phase at Center

Ear for Music 3

So Why Can We Detect Phase in One Case ... and Not the Other?

It's the Basilar Membrane, Stupid

It's the Basilar Membrane, Stupid

Missing Harmonic Hardly Noticed...

Ear for Music 3

Missing Harmonic Hardly Noticed...

Pitch vs. Frequency in Complex Tones

August Seebeck (1805-1849) Technische Universität Dresden

For Simple sine wave tones, Pitch *is* directly determined by Frequency

Question:

For Complex Tones, is Perceived musical Pitch determined simply by the **Fundamental** .. or Lowest Frequency Component?

or, is Pitch something quite different?

Georg Simon Ohm (1789-1854) Polytechnic School of Nuremburg

Pitch vs. Frequency in Complex Tones

August Seebeck (1805-1849) Technische Universität Dresden

For Simple sine wave tones, Pitch *is* directly determined by Frequency

Question:

For Complex Tones, is perceived musical Pitch determined simply by the Fundamental or Lowest Frequency component?

• or, is Pitch something quite different?

Georg Simon Ohm (1789-1854) Polytechnic School of Nuremburg

Herman von Helmholtz (1821-1894)

The Strange Case of the Missing Fundamental

No Fundamental: Only Harmonics
The Strange Case of the Missing Fundamental

No Fundamental: Only Harmonics

The Strange Case of the Missing Fundamental

Phase Scrambled + Missing Fundamental

Missing Fundamental in a Complete Melody

Absolute Pitch

Ability to quickly and accurately name the Pitch of a complex tone

- Fairly rare 1 in 10,000 estimate in general population
- Not to be confused with Relative Pitch
- Odds go up if you
 - are musically trained (up to 4%)
 - were exposed to intensive musical training as a young child
 - have a tonal first language (e.g. Chinese, Vietnamese)
 - are on the autism spectrum
 - are named Mozart or John Phillip Sousa
 - are Synesthetic
- Many non-musicians have good pitch recall

Pitch Perception Test

Tone Pairs	Pair 1	Pair 2	Pair 3	Pair 4
Test A (pure tones)		\rightarrow		\rightarrow
Test B (pure tones)				
Test C (complex tones)				
Test D (complex tones)				

Spectrogram of Test A

Frequency (Hz)

Ear for Music 3

Pitch Perception Test

Tone Pairs	Pair 1	Pair 2	Pair 3	Pair 4
Test A (pure tones)	1	\rightarrow	1	\rightarrow
Test B (pure tones)				
Test C (complex tones)				
Test D (complex tones)				

Spectrogram of Test B

Frequency (Hz)

Edi

92

Tone Pairs	Pair 1	Pair 2	Pair 3	Pair 4
Test A (pure tones)	↑	\downarrow	1	\downarrow
Test B (pure tones)	1	\downarrow	\checkmark	1
Test C (complex tones)				
Test D (complex tones)				

Spectrogram of Test C

Frequency (Hz)

Ear for Music 3

Pitch Perception Test

Tone Pairs	Pair 1	Pair 2	Pair 3	Pair 4
Test A (pure tones)	1	\downarrow	1	\checkmark
Test B (pure tones)	1	\downarrow	\checkmark	1
Test C (complex tones)	\downarrow	1	\checkmark	1
Test D (complex tones)				

Diana Deutsch's Tritone Paradox (Test D)

3/15/24

Continuity Illusion

Now concentrate on the beeps...

Shepard-Risset Glissando

Shepard-Risset Glissando

Risset's Accelerando

Jean-Clause Risset (1938-2016) Composer, Bell Labs

Risset's Accelerando

Question Time

Course Outline

- 1. Building Blocks: Some basic concepts
- 2. Resonance: Building Complex Sounds
- 3. Hearing and the Ear
- 4. Musical Scales
- 5. Musical Notation; String Instruments
- 6. Timbre and Pipe Instruments
- 7. Human Voice and Singing
- 8. Harmony and Dissonance; Chords