## Session \#2 Solar and Lunar Eclipses

Moon (×4)

Mars

Sunday night

## Types of Eclipses

- Lunar (Full Moon)
- total
- penumbral
- Solar (New Moon)
- Partial
- Total
- Annular


## Basic types of eclipses

## SOLAR ECLIPSE

## LUNAR ECLIPSE

NORTH CELESTIAL

Orbit direction

- Orbit direction




## But first . . .back to the Moon's orbit

# Why don't eclipses happen every month? 

The moon's orbit is tilted.


Unfavorable for eclipse


Light
from

Sun

Favorable for eclipse
Light
from

Sun


Solar


Conditions are favorable for eclipses when the Moon is on the line of intersection of the Moon's orbit and the plane of the Earth's orbit.

Favorable for eclipse.




Tomorrow's Sun/Moon positions

## Moon's orbit is not a perfect circle

## Elliptical orbit of Moon around Earth




## "The Moon is huge!"



## "Moon illusion"



## Lunar Eclipses





## SOMETHING IS ABOUT TO CHANGE

> JOHN
> HAGEE


FOUR
MOONS

## "Blood Moons?"



## Two parts of a shadow



## Figure 2-1. Lunar Eclipse Contacts

## North



www.EclipseWise.com/eclipse.html


Thousand Year Canon of Lunar Eclipses ©2014 by Fred Espenak

## Explanation:

- "20:15 TD" - max eclipse in terrestrial dynami time.
- " $\Delta T=71 \mathrm{sec}^{\prime}$ - diff between TD and UT
- "Saros" series (stay tuned)
- "Par = 77m" - duration of partial phase
- "Gam" - gamma (min dist from ctr of Moon to axis of Earth's umbral shadow cone)
- "U.Mag" - Umbral eclipse magnitude (fract of Moon's dia immersed in Earth's shadow)
- "P.Mag" - Penumbral eclipse magnitude
www.EclipseWise.com/eclipse.html


Thousand Year Canon of Lunar Eclipses
© 2014 by Fred Espenak
www.EclipseWise.com/eclipse.html


Tot. $=65 \mathrm{~m}$
Par. $=218 \mathrm{~m}$
Eclipse Event

Penumbral Begins
Partial Begins
Total Begins
Greatest Eclipse Total Ends

Partial Ends
Penumbral Ends

Contact

P1
U1
U2
Greatest
U3
U4
P4

Time TD

03:58:21.1
05:10:34.3
06:27:09.2
06:59:56.2
07:33:13.1
08:49:30.1
10:01:43.5
U.Mag. $=1.1784$
P.Mag. $=2.2595$


Canon of Lunar Eclipses

## A note about "time".

- Solar time = based on the position of the Sun
- Local Mean Time/Standard time = based on an "average Sun" (time on your phone)
- Universal Time = Time at prime meridian

$$
\begin{aligned}
& \mathrm{CST}=\mathrm{UT}-6 \text { hours } \\
& \mathrm{CDT}=\mathrm{UT}-5 \text { hours }
\end{aligned}
$$

Ex 1) Sept 3, 10 hrs UT = Sept 3, 5am CST
Ex 2) Sept 3, 23 hrs UT = Sept 3, 6pm CST
Ex 3) Sept 3, 2 hrs UT = Sept 2, 9pm CST

| Eclipse Event | Contact | Time <br> TD |  |
| :---: | :---: | :---: | :--- |
| Penumbral Begins | P1 | $03: 58: 21.1$ |  |
| Partial Begins | U1 | $05: 10: 34.3$ | $\bullet$ |
| Total Begins | U2 12:10am Mar. 14 | $06: 27: 09.2$ | $\bullet$ |
| 1:27am |  |  |  |
| Greatest Eclipse | Greatest | $06: 59: 56.2$ | $\bullet$ |
| Total Ends | U3 | $07: 33: 13.1$ | $\bullet$ |
| Partial Ends | U4 | $08: 49: 30.1$ | $\bullet$ |
| Penumbral Ends | P4 | $10: 01: 43.5$ |  |

## Solar Eclipses

## Total Solar Eclipse of 1999 August 11

## Lunar Perigee vs Apogee

Image by Jeff Bryant



Total Solar Eclipse Paths: 2001-2025



Shadow width in Illinois = 71 miles, moving 1425 mph!!

## Regression of nodes

- Where the Moon crosses the ecliptic a bit westward each time
- Due to gravitational pull of other bodies
- Full trip around ecliptic = 18.6 years



## "Saros Cycle"

- Exactly 223 synodic months, or
- approximately 6585.3211 days, or 18 years, 10,11 , or 12 days (depending on the number of leap years), and 8 hours
- Sun, Moon \& Earth return to same geometry
- Applied to eclipses by Hally (1686)
- Three cycles must coincide for an eclipse. . . . .


## 3 "months"

- "Synodic Month" - lunar phases (29.53059 days)
- "Draconian Month" - Moon returns to same node (27.2122 days)
- "Anomalistic Month" - perigee to perigee (27.53455 days)


August 21, 2017
August 11, 1999


Descending node lunar eclipse paths


## Do we live in "special times?"

- Moon receding at a rate of 1.5 inches $(3.8 \mathrm{~cm})$ each year!
- "Angular Momenturi" L-ry m v v=const.
- Max distance reached in 50 billion years!
- Last total solar eclipse = 600 million years!


## Do other planets have eclipses?

- 2004 - Jupiter from HST


## 00 0

- Phobos from Curiosity rover (August 2013)


## A quick inventory . . . .

- 8 planets
- 5 dwarf planets
- 1,278,134 asteroids
- 4,724 Kuiper Belt Objects
- 8,007 comets
- 288 planetary moons
- 9 dwarf planet moons
- 378 moons surrounding asteroids
- 119 KBO moons
- 6 objects with rings (4 planets, 1 dwarf)
- (as of July 8, 2023)


## Moon is $5^{\text {th }}$ largest in solar system


"What about other Suns?"

## Transits



## So . . . how does this work?



1. Which star system has the largest planet?
2. Which planet moves the fastest?
3. Which planet is farthest from the star?

## Transit Light Curves



Hotter Stars


## Sunlike Stars

Cooler Stars

Kepler 22b (???)


2009

Catalog
Status v
Detection v
Download VOTable | CSV | DAT

Showing 5502 planets / 4063 planetary systems / 877 multiple planet systems
All fields

Show $100 \vee$ enures

| Planet | Mass $\left(M_{\text {jup }}\right)$ | Radius ( $\mathrm{R}_{\text {Jup }}$ ) | $\begin{gathered} \text { Period } \\ \text { (day) } \end{gathered}$ | $(\mathrm{AU})^{a}$ | e | ${ }_{(\mathrm{deg})}^{i}$ | Ang. dist. (arcsec) | Discovery | Update |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 55 Cnce | 0.02703 | 0.1737 | 0.7365478 | 0.015439 | 0.028 | 90.36 | 0.001264 | 2004 | 2023-08-22 |
| HD 175679 b | 59.9 | - | 1366 | 3.38 | 0.38 | - | - | 2012 | 2023-08-21 |
| TYC 3318-01333-1 b | - | - | 562 | 1.414 | 0.1 | - | - | 2018 | 2023-08-21 |
| TOI-561 b | 0.00705 | 0.1267 | 0.4465688 | 0.0106 | 0 | 88.12 | - | 2020 | 2023-08-21 |
| Kepler-1660 (AB) b | 4.89 | - | 239.48 | - | 0.055 | 84.7 | - | 2017 | 2023-08-21 |
| HD 140901 c | - | - | 7417.5 | 7.421 | 0.6 | - | - | - | 2023-08-18 |
| HD 140901 b | - | - | 9.02378 | 0.085 | 0.47 | - | - | 2022 | 2023-08-18 |
| HD 16905 b | 9.065 | - | 6707.49126 | 6.443 | 0.665 | 19.657 | - | 2022 | 2023-08-17 |
| OGLE-2019-BLG-0825 b | 50 | - | - | 0.06 | - | - | - | 2023 | 2023-08-17 |

Questions?

