

Demystifying Climate Change

Session 6

CO₂ and Other Greenhouse Gases:

Where do they come from? Where do they go? How are they regulated?

> OLLI at Illinois Spring 2021

D. H. Tracy DavidHTracy@gmail.com

Course Outline

- 1. Building Blocks: Some important concepts
- 2. Our Goldilocks Earth: a Radiative Balancing Act
- 3. The Role of the Atmosphere: Greenhouse Gases & Clouds
- 4. Global Circulation and Dynamics of the Earth System: Oceans, Atmosphere, Biosphere, Cryosphere, People, Lithosphere
- 5. Natural Variability of the Climate, short and long term. Ice Ages
- 6. Carbon Dioxide and other Greenhouse Gases: Where do they come from, where do they go, how are they regulated?
- 7. Impacts and Future Projections for Global Warming -- Uncertainties
- 8. Amelioration Strategies. The Climate Debate. Policy Options.

Remember CO₂ Saturation?

Actual Surface Temperature vs. GH Gas Concentration Doublings

5

Full Atmosphere: Water Vapor + CO_2 Leave A Window at 10-11 μ m

Climate Change 6

7

Radiative Forcing as of 2011 (IPCC AR5)

		Emitted compound	Resulting atmospheric drivers	Radiative forcing by emissions and drivers	Level of onfidence				
Anthropogenic	gases	CO2	CO2	1.68 [1.33 to 2.03]	VH				
	suhouse	CH_4	CO_2 $H_2O^{str} O_3$ CH_4	0.97 [0.74 to 1.20]	н				
	nixed gree	Halo- carbons	O ₃ CFCs HCFCs	0.18 [0.01 to 0.35]	н				
	Well-n	N ₂ O	N ₂ O	0.17 [0.13 to 0.21]	VH				
	Short lived gases and aerosols	со	CO ₂ CH ₄ O ₃	0.23 [0.16 to 0.30]	м				
		NMVOC	CO ₂ CH ₄ O ₃	0.10 [0.05 to 0.15]	М				
		NO _x	Nitrate CH ₄ O ₃	-0.15 [-0.34 to 0.03]	м				
		Aerosols and precursors (Mineral dust,	Mineral dust Sulphate Nitrate Organic carbon Black carbon	-0.27 [-0.77 to 0.23]	н				
	a	SO ₂ , NH ₃ , Organic carbon nd Black carbon)	Cloud adjustments due to aerosols	-0.55 [-1.33 to -0.06]	L				
			Albedo change due to land use	-0.15 [-0.25 to -0.05]	М				
Natural			Changes in solar irradiance	0.05 [0.00 to 0.10]	м				
Tatalanthananania				2011 2.29 [1.13 to 3.33]	н				
RF relative to 1750				1980 1.25 [0.64 to 1.86]	н				
				1950 0.57 [0.29 to 0.85]	М				
				-1 0 1 2 3					
Radiative forcing relative to 1750 (W m ⁻²)									

IPCC AR5 SPM-5

Greenhouse Gas Radiative Forcing as of 2011 (IPCC AR5)

Earth's Energy Budget

Water H₂O

a very important GH Gas -- but not considered a Radiative Forcing agent

Water Content of Atmosphere Limited by Condensation

Water is on Autopilot

- No external intervention could feasibly *directly* affect H₂O vapor content of atmosphere
 - but indirectly any Forcing can and does affect water vapor

- Could the Positive Feedback <u>run away</u>?
 - Inducing Iceball Earth

or

– Venus-like Sauna Earth

* van der Ent & Tuinenburg (2017)

Rough Timeline of Past Glaciations

Sauna Earth?

Questions about Greenhouse Gases in General or Water in Particular?

	Emitted compound	Resulting atmospheric drivers	Radiative forcing by emissions and drivers	Level of onfidence
	CO ⁵	CO ₂	1.68 [1.33 to 2.03]	VH
Long-	CH₄	CO_2 $H_2O^{str} O_3$ CH_4	0.97 [0.74 to 1.20]	н
Gases	Halo- carbons	O ₃ CFCs HCFCs	0.18 [0.01 to 0.35]	н
Well Mixed	N ₂ O	N ₂ O	0.17 [0.13 to 0.21]	VH
Chart	Со	CO_2 CH_4 O_3	0.23 [0.16 to 0.30]	М
lived Gases		CO ₂ CH ₄ O ₃	I I I I 0.10 [0.05 to 0.15]	М
2	NOx	Nitrate CH ₄ O ₃	-0.15 [-0.34 to 0.03]	М

Climate Change 5

Carbon Dioxide CO₂

...the Gorilla in the room

Carbon Dioxide CO₂

Elemental Abundances

Solar System:

Earth Crust:

- 1. Hydrogen
- 2. Helium
- 3. Oxygen
- 4. Carbon
- 5. Nitrogen
- 6. Neon

- 1. Oxygen
- 2. Silicon
- 3. Aluminum
- 4. Iron
- 5. Calcium
- 6. Sodium

10-15 **Carbon**

Elemental Carbon (¹²C) Forms (Allotropes)

Graphite

Diamond

Buckminsterfullerene

Carbon Nanotubes

Amorphous Carbon

3/9/21

Carbon Compounds

Carbon Compounds

Climate Change 6

Tonnage of Carbon vs. CO₂

Time (yr)

Example: 2020 US Per Capita Carbon Emissions

3.7 tons of Carbon *or* **13.7** tons of CO₂

per capita, per year

Le Quere et al, Global Carbon Budget 2018 Fig 5 Earth System Science Data.net edgar.jrc.ec.Europa.eu for 2019 carbonbrief.org for 2020 3/9/21

Brilliant—cut diamond

Carbon in Rocks 50,000,000 Climate Change 6

If All those 50 Million Gigatons of Carbon were put into the Atmosphere as CO₂

- CO₂ would increase 60,000 fold
- Air would contain ~37 atmospheres of CO₂
 - That's just 40% of Venus CO₂, but enough to cook the surface to many hundreds of °F

What Happens When a CO₂ Molecule Wanders into a Drop of Water?

It may just dissolve in the water and float around *or* It may react with the water

A CO₂ Molecule and an H₂O can join up to form Carbonic Acid

... form depends on pH of water: Low pH acidic High pH basic

The Form CO₂ Takes in Water Depends on pH

The Form CO₂ Takes in Water Depends on pH

Weathering

Long Term Carbon Cycle: Our Carbon "Thermostat"

- Weathering reaction removes CO₂, sends CaCO₃ to oceans
- Ocean animals make shells of CaCO₃ which fall to bottom
- Limestone subducts under continents via plate tectonics, into the molten mantle
- Carbonates break down in mantle and release CO₂
- CO₂ escapes via volcanism to atmosphere and ocean

Long Term Carbon Cycle: Our Carbon "Thermostat"

- Weathering reaction removes CO₂, sends CaCO₃ to oceans
- Ocean animals make shells of CaCO₃ which fall to bottom
- Limestone subducts under continents via plate tectonics, into the molten mantle
- Carbonates break down in mantle and release CO₂
- CO₂ escapes via volcanism to atmosphere and ocean

Long Term Carbon Cycle: Our Carbon "Thermostat"

- Weathering reaction removes CO₂, sends CaCO₃ to oceans
- Ocean animals make shells of CaCO₃ which fall to bottom
- Limestone subducts under continents via plate tectonics, into the molten mantle
- Carbonates break down in mantle and release CO₂
- CO₂ escapes via volcanism to atmosphere and ocean

- Amount of CO₂
- Temperature
- Amount of H₂O
- Fresh Exposed Rock

Amount of CO_2 \uparrow

Temperature

Amount of H_2O

Fresh Exposed Rock

•

•

If CO₂ in atmosphere goes up for any reason.....

- Temperature Increases
- **Precipitation Increases**

55

• Amount of CO_2

- Temperature
- Amount of H_2O
- Fresh Exposed Rock

If CO₂ in atmosphere goes up for *any reason*.....

- Temperature Increases
- Precipitation Increases

So

- if CO_2 in atmosphere goes **up** \uparrow ,
- the Weathering removal reaction *speeds up*
- … and CO₂ goes down ↓

Classic Negative Feedback

If CO₂ in atmosphere goes up for any reason.....

- **Temperature Increases**
- **Precipitation Increases**

So

• Amount of CO_2

Amount of H₂O

Fresh Exposed Rock

Temperature

if CO₂ in atmosphere goes **up** \uparrow ,

Feedback

- the Weathering removal reaction speeds up
- ... and CO₂ goes **down** \downarrow **Classic Negative**

Negative Feedback

- Relatively *new* tropical mountain ranges play key role
- These occur along volcanic arcs
- Volcanic arcs occur intermittently as continents drift

Tropical Mountain Building Eras may Trigger Glaciation Periods (like the one we are in)

Francis Macdonald (UC Santa Barbara 2018)

Group claims high correlation between *tropical* volcanic mountain building periods and glacial ages over last 500 Million years.

Yet Another Graphic Showing Long-term Carbon Cycle

Mashup of Paleo-CO₂ Estimates

Mashup of Paleo-CO₂ Estimates

Mashup of Paleo-CO₂ Estimates

Rough Timeline of Past Glaciations

There Have Been Several Glaciated Periods

Snowball Earth occurred several times in the last billion years when ice-albedo feedback spiraled out of control

Snowball Earth Scenario according to Dennis Hartmann (U Washington) Rocks in Yukon that were once at the equator at sea level and covered by ice.

Snowball Earth Scenario according to Dennis Hartmann (U Washington)

Snowball Earth Scenario according to Dennis Hartmann (U Washington)

An ice-covered Earth would have a very high albedo and an extremely low temperature

If the Earth ever became ice covered, how could the ice ever melt?

Snowball Earth Scenario according to Dennis Hartmann (U Washington)

Extremely high CO₂ concentrations would be needed to overcome the Albedo effect and start melting the ice...

During Snowball Earth, volcanic activity injected CO2 into the atmosphere

... a continuation of the normal process

Snowball Earth Scenario according to Dennis Hartmann (U Washington)

> But with land and oceans mostly covered with ice, there was *no chemical weathering* to remove CO₂ from the atmosphere ... so it continued to accumulate for millions of years

Snowball Earth Scenario according to Dennis Hartmann (U Washington)

Eventually the greenhouse effect became so strong that the ice began to melt, despite its high albedo.

Once initiated, melting would proceed very rapidly as the albedo dropped.

Snowball Earth Scenario according to Dennis Hartmann (U Washington)

Snowball Earth Scenario according to Dennis Hartmann (U Washington)

Post-Snowball "Hothouse" Climate

- Immediately after Snowball Earth thaws, CO₂ concentrations would have been tremendously high
- Was likely the hottest period in Earth's history right after the coldest!
 - Temperatures jumped from -50° C to 50° C in only 1000 years!

Disclaimer: This story is a reasonable one, even likely, but cannot be considered proven. The evidence is somewhat circumstantial...

Short Term Carbon Cycles

(6000)

The COVID Effect: CO₂ emissions dipped in 2020

3/9/21

Zhu Liu et al, Nature Communications (2020)

3/9/21

Short Term Carbon Cycle as of 2011

Short Term Carbon Cycle in Ocean as of 2011

CaCO₃ Dissolves below the CCD (Carbonate Compensation Depth)

Calcium Carbonate more soluble at:

- Lower temperatures
- Higher pressures
- lower pH (more CO₂)

Questions about Snowball Earth or the Short Term Carbon Cycle?

Climate Change 5

Methane CH₄

Greenhouse Gas Radiative Forcing as of 2011 (IPCC AR5)

Global Atmospheric Concentrations of Methane Over Time

3/9/21

89

Global Atmospheric Concentrations of Methane Over Time

Global Atmospheric Concentrations of Methane Over Time

GHGSAT

[GreenHouse Gas Satellite] Detects Methane Emissions from Space

Eight Methane Leaks Observed in Oil Field in Central Turkmenistan *Feb. 1, 2021*

GHGSAT Iris & Hugo Satellites

Methane from Permafrost and Hydrates

Halogenated Gases Methane CH_4 CFC's **ChloroFluoroCarbons** Simple hydrocarbons with Freon-12 Hydrogens replaced by halogens like Chlorine and Fluorine C CCl_2F_2 F

Climate Change 6

Greenhouse Gas Radiative Forcing as of 2011 (IPCC AR5)

Year

Global Atmospheric Concentrations of Selected Halogenated Gases, 1978–2015

Other halogenated gases

Montreal Protocol (1987)

- International Agreement to phase out Chlorine- and Bromine-containing hydrocarbons which attack Stratospheric Ozone.
 - Used as refrigerants, fire suppressants, aerosol propellants.
- Universally adopted, big success.
 - Substituted by Fluorine-containing compounds.
- Note: All are GHG's.

Antarctic Ozone Hole September 2006

Year

As CFC's are phased out, HFC's are growing

Climate Change 6

3/9/21

Climate Change 6

Nitrous Oxide N₂O

7.7 μm

Greenhouse Gas Radiative Forcing as of 2011 (IPCC AR5)

Global Atmospheric Concentrations of Nitrous Oxide Over Time

Year (negative values = BCE)

Year

Global Atmospheric Concentrations of Nitrous Oxide Over Time

Climate Change 5

Course Outline

- 1. Building Blocks: Some important concepts
- 2. Our Goldilocks Earth: a Radiative Balancing Act
- 3. The Role of the Atmosphere: Greenhouse Gases & Clouds
- 4. Global Circulation and Dynamics of the Earth System: Oceans, Atmosphere, Biosphere, Cryosphere, People, Lithosphere
- 5. Natural Variability of the Climate, short and long term. Ice Ages
- 6. Carbon Dioxide and other Greenhouse Gases: Where do they come from, where do they go, how are they regulated?
- 7. Impacts and Future Projections for Global Warming -- Uncertainties
- 8. Amelioration Strategies. The Climate Debate. Policy Options.