

Demystifying Climate Change

Boneyard Creek, Champaign ca. 20,000 B.C.E. ?

Session 5 Natural Variability of the Climate

> OLLI at Illinois Spring 2021

D. H. Tracy DavidHTracy@gmail.com

Reminder

- OLLI Course Download site has
 - Each slide set (with annotations) posted a day after session
 - Syllabus
 - Reference List

Course Outline

- 1. Building Blocks: Some important concepts
- 2. Our Goldilocks Earth: a Radiative Balancing Act
- 3. The Role of the Atmosphere: Greenhouse Gases & Clouds
- 4. Global Circulation and Dynamics of the Earth System: Oceans, Atmosphere, Biosphere, Cryosphere, People, Lithosphere

5. Natural Variability of the Climate, short and long term. Ice Ages

- 6. Carbon Dioxide and other Greenhouse Gases: where do they come from, where do they go, how are they regulated?
- 7. Impacts and Future Projections for Global Warming -- Uncertainties
- 8. Adaptation and Amelioration Strategies. The Climate debate. Policy options.

Reconstructing Past Climates

- Recent Past: Instrumental Records
- More Distant Past: Inference from Proxies
 - Paleoclimatology

Oldest Continuous Instrumental Temperature Record

- Anomalies relative to a baseline period:
 - 1961-1990 WMO recommendation
- Small Region

4 Global Instrumental Surface Temperature Records

World Meteorological Organization Weather Station Networks

- 3000 in Regional Basic Climatological Networks
- 4000 in Regional Basic Synoptic Networks
- also Antarctic Observing Network
- \sim 4000 additional stations not shown

WMO.int

Global Ocean Observing System

> administered by Intergovernmental Oceanographic Commission

- 1400 Surface Drift Buoys
- 700+ Moored Buoys
- 4000 Profiling Floats
- 400+ Voluntary Observing Ships
- Many other platforms

Main in situ Elements of the Global Ocean Observing System

October 2017

Generated by www.jcommops.org, 13/11/2017

When Did Weather Stations Come Online?

NOAA Weather Stations in CU

- mostly rain gauges only
- 3 provide Temperature, Wind etc.

Bondville Environmental and Atmospheric Research Site (BEARS)

3/2/2021

Global Temperature Anomaly (relative to 1850-1900)

3/2/2021

Baseline: 1951-1980

°°C

Movie shows development regionally and over time of Temperature Anomalies. Note the Color scale top-left.

1880 - 1884

NASA Scientific Visualization Studio

Global Temperature Anomalies vs. 1951-1980 Baseline

2016 - 2020

Baseline: 1951-1980 16.

2

°°C

-1

□-2

NASA Scientific Visualization Studio

Climate Change 5

Paleoclimatology Datasets

National Climatic Data Center (NOAA)

Paleoclimatology Datasets

National Climatic Data Center (NOAA)

Fall 2003: High Sunspot Activity

During active sunspot years, overall Irradiance is HIGHER, but it DROPS briefly when a sunspot drifts across

SORCE Solar Radiation & Climate Experiment

Laboratory for Atmospheric and Space Physics U Colorado (Boulder) MDI Intensitygram

30-Oct-2003 17:36

3/2/2021

Fall 2003: High Sunspot Activity

During active sunspot years, overall Irradiance is HIGHER, but it DROPS briefly when a sunspot drifts across

SORCE Solar Radiation & Climate Experiment

Laboratory for Atmospheric and Space Physics U Colorado (Boulder)

Meet the Maunders

Annie and Walter Maunder in India 1898 for Solar Eclipse expedition

400 Years of Sunspot Observations

1890's Dallmeyer Photo-Heliograph at Royal Observatory Greenwich

G. Kopp, 05 Feb. 2018

Paleoclimatology Datasets

From graphic by Ed Hawkins. Data: from PAGES2k (and HadCRUT 4.6 for 2001-). Reference period: 1850-1900.

12,000 Year Global Temperature Reconstructions based on ~800 Proxy Records

36

Kaufman et al, *"Holocene Global Mean Temperature, a Multi-Method Reconstruction Approach",* Nature: Scientific Data (2020)

At 1200 years before present (BP), we are coming out of the last ice age. Temperature peaks at ~ 6000 years BP. then slowly falls, until industrial era.
Various Proxy **Reconstructions** of Global **Temperature for** Last 2000 Years Instrumental Record Moberg et. al. Nature (2005) **11 Proxy Datasets** Early reconstructions were based on regionally biased datasets (European e.g.) which show more variability, including the infamous "Medieval Warm Period" and "Little Ice Age"

3/2/2021

37

12,000 Year Global Temperature Reconstructions based on ~800 Proxy Records

Kaufman et al, *"Holocene Global Mean Temperature, a Multi-Method Reconstruction Approach",* Nature: Scientific Data (2020)

Attempts to Model Recent Northern Hemisphere Climate

40

Questions about Sunspots and the Last Millenium?

Preview:

Proxy Estimates of Earth Surface Temperature

The Most Important Temperature Proxy

δ180

"Delta Oh Eighteen"

Isotopologues of Water

Isotopologues of Water

You can buy it...

Fractionation by Distillation

Fractionation by Distillation

Global Map of ¹⁸O in Surface Seawater

Global Map of ¹⁸O in Surface Seawater

Climate Change 5

NASA Goddard ISS

Global Map of ¹⁸O in Surface Seawater

Climate Change 5

NASA Goddard ISS

^{3/2/2021}

Climate Change 5

Climate Change 5

Temperature effect on the $\delta^{18}O$ of precipitation

Rozanski, 1993

Eric Wolff, British Antarctic survey. GRIP core being sawed

Ice Core Drilling

Climate Change 5

What can we get from Ice Cores?

Eric Wolff, Britis survey. GRIP cor

At each layer:

- 1. Precipitation Temperatures from $\delta^{18}O$
- 2. Atmospheric Gases from Bubbles (e.g. CO₂)
- 3. Dust

Ice Core Drilling

Climate Change 5

Annual Layers Visible in Vostok Core Depth = 1855 m (6085 feet)

¹¹ years

Finely Spaced Ice Core δ^{18} O Measurements Can Sometimes Trace Out Annual Deposition Layers

Kobenhavns University Niels Bohr Institute Centre for Ice and Climate

Climate Change 5

Vostok Ice Core Data Past 420,000 years

From Drilling 1970's through 1996

3/2/2021

warmer

colder

3/2/2021

DO and

Heinrich

Climate Change 5

65

Dansgaard-Oeschger Events only show up in Greenland

Last Big Cooling Event as we emerged from the last Ice Age 13K years ago: The Younger

Dryas

Dryas octopetala

Last Big Cooling Event as we emerged from the last Ice Age 13K years ago:

Drill ship JOIDES Resolution Integrated Ocean Drilling Program

> Oregon State Univ. Ocean Sediment Core Collection (2017) 35 km

Deep Sea Drilling

Sediment Layers

Deep Ocean δ^{18} O Tracks Ice Cap Volume

Bottom Dwelling Forams

0.5 mm

Ammonia beccarii (Wikimedia) Sea Level dropped 120 m (400 ft)

Shells made of

CaCO₃

Low ¹⁸**O**

¹⁸O in Oceans is High Deep Sea Sediment Cores Reveal Total Ice Cap Volume

3/2/2021

Climate Change 5

71

SEM micrographs of four benthic **foraminiferans** (ventral view) from the <u>USGS</u>. Clockwise from top left: *Ammonia beccarii, Elphidium excavatum clavatum, Buccella frigida,* and *Eggerella advena*.

5.3 Million Year Record of δ^{18} O in Deep Sea Benthic Forams

- "Stacked" Record
 - 57 cores
- Proxy for Ice Cap Volume Thus indirectly
 - Climate
 - Sea Level

Another Plot of the Same Foram $\delta^{18}\text{O}$ Data

Questions about $\delta^{18}O$, Ice Cores, Ocean Sediments

3/2/2021 76

Milutin Milanković (1879-1958) Serbian Civil Engineer and Climatologist

Magnum Opus: "Canon of Insolation of the Earth and its Application to the Problem of the Ice Ages" (1941, in German) [English Translation 1969]

Milanković Cycles

Basic Idea:

- Changes in Solar Insolation due to Earth's Orbit Changes over time can drive climate
 - Solar Radiation Forcing
- Orbital Changes Include
 - Axial Tilt and Precession
 - Elliptical Orbit Eccentricity
 - Orbital Precession

Earth's Orbit Nearly Elliptical

Sun

Johannes Kepler (1571-1630)

3/2/2021

lsaac Newton (1643-1727)

Wikimedia

...but not nearly *this* eccentric

Plane of Orbit called the "Ecliptic Plane"

Climate Change 5

Orbital Eccentricity Varies Slowly

 $e = \frac{r_A - r_P}{r_A - r_P}$ $r_A + r_P$

Seasonal solar insolation variation of 20-30%!

Eccentricity:

- varies from
 0.0034 to 0.058
- Now 0.0167 (almost circular) 6%
- Complex variation
 - Roughly <u>100,000</u> year cycle

Inclination to the Invariable Plane: Procession of the Ecliptic

Not directly considered by Milanković

Again, No climate effect

1.57°

Axial Obliquity (Tilt)

Axial Tilt *appears* to vary on a 40,000 year cycle...

At present, Tilt $\approx 23.4^{\circ}$

Sizable climate effect

Axial Precession

Caused by Tidal Torques from Moon & Sun

25,770 Year Period

Axial Precession

Discovery and Measurement of the "Precession of the Equinoxes"

Fall Equinox (~Sept 22)

Spring Equinox (~Mar 20)

Spring Equinox (~Mar 20)

Milkanovic Cycles and Ice Ages

Solar Forcings are sizable, but not enough alone to explain huge temperature swings.

Probably act as triggers --Amplified by CO₂ from Ocean and by Ice Dynamics

Milkanovic Cycles and **Ice Ages**

Solar Forcings are sizable, but not enough alone to explain huge temperature swings.

Probably act as triggers --Amplified by CO₂ from Ocean and by Ice Dynamics

with Ice Core Data

Explaining the Mid-Pleistocene Transition 1 Million Years Ago

Proxy Estimates of Earth Surface Temperature

Proxy Estimates of Earth Surface Temperature

Climate Change 5

from various source data.

Proxy Estimates of Earth Surface Temperature

Milkanovic Cycles and Ice Ages

Solar Forcings are sizable, but not enough alone to explain huge temperature swings.

Probably act as triggers --Amplified by CO₂ from Ocean and by **Ice Dynamics**

Example of Recent Ice Age Modeling:

Ganopolski & Brovkin 2017

Were able to model last 4 Ice Ages using only Milankovic Orbital Forcing together with reasonable feedbacks from

- Ice sheet models •
- AMOC models •
- CO₂ automatic feedbacks •
 - Ocean dynamics
 - Plankton blooms due to dust

Bottom Line:

- Peat and Permafrost dynamics
- Land biota
- Volcanic Activity ٠

Rough Timeline of Past Glaciations

Questions about Milanković Cycles and the Long Term Proxy Record?

0

Course Outline

- 1. Building Blocks: Some important concepts
- 2. Our Goldilocks Earth: a Radiative Balancing Act
- 3. The Role of the Atmosphere: Greenhouse Gases & Clouds
- 4. Global Circulation and Dynamics of the Earth System: Oceans, Atmosphere, Biosphere, Cryosphere, People, Lithosphere

5. Natural Variability of the Climate, short and long term. Ice Ages

- 6. Carbon Dioxide and other Greenhouse Gases: where do they come from, where do they go, how are they regulated?
- 7. Impacts and Future Projections for Global Warming -- Uncertainties
- 8. Adaptation and Amelioration Strategies. The Climate debate. Policy options.