

Sound of Music

"Throat Singing" YouTube Medley

How It Works

Session 5 Musical Instruments: Pipes

> OLLI at Illinois Spring 2020

> > D. H. Tracy

Sound of Music How It Works

Session 6 Musical Instruments: Pipes

> OLLI at Illinois Spring 2020

> > D. H. Tracy

Course Outline

- 1. Building Blocks: Some basic concepts
- 2. Resonance: Building Sounds
- 3. Hearing and the Ear
- 4. Musical Scales
- 5. Musical Instruments
- 6. More Musical Instruments
- 7. Singing; Notation
- 8. Harmony and Dissonance

Oldest Musical Instrument?

- Divje Babe "Flute"
- Cave Bear femur
- Discovered 1995 near Cerkno, Slovenia
- Age ~ 43,000 BP (Neanderthal)
- Origin and purpose of holes controversial

Playable Neolithic Chinese Flutes

- Jiahu Flutes
- Henan Province, China
- Discovered 1999
- ~ 9000 BP
- Ulna bone of red-crowned crane
- Still playable

Aerophone Instruments

Three main problems:

- 1. Excitation **HARD**
 - How to get the pipe resonating

- Playing desired notes
- 3. Getting Sound Out
 - Resonances are already sound waves

pipes

3 Basic Kinds of Excitation of Pipes

- Edge Tones
- Untuned Reeds
- Vibrating Human Lips

Air hitting cylinder barrier creates "Vortex Street"

Mountain Vortex Street in Atmosphere (from space)

Edge Tone + Resonant Pipe

Recorder

pipes

Edge Tone + Resonant Pipe

Recorder

pipes

Woodwind Reeds (Untuned – Stiff)

arundo donax (Giant Cane)

Single Reeds (mounted on mouthpiece)

- Clarinets
- Saxophones
- Some Bagpipes

Double Reeds (act *as* the mouthpiece) • Oboe

- Bassoon
- English Horn also
- Some Bagpipes

Clarinet Embouchure

Clarinet Embouchure

Sax, Oboe, Bassoon: Conical Case

≅

≅

 $\lambda/2$

Sax cavity approximates a cone

Invented June 1846 by Adolphe Sax

Tenor Saxophone

Brasses Excited by Lip Vibrations (Labrosones)

pipes

Trumpet playing E3 (165 Hz)

...Trombone also

Fundamental virtually missing, but we hear the implied pitch

Lip Vibrations: Glass Didgeridoo

newt.phys.unsw.edu.au/jw/didjeridu.html

Aerophone Instruments

Three main problems:

- 1. Excitation HARD
 - How to get the pipe resonating

2. Frequency Control

Playing desired notes

3. Getting Sound Out **EASY**

 Resonances are already sound waves

pipes

Frequency Control

- Two Basic Strategies
 - 1. Employ Different Resonant Modes (Partials)

Course Control

2. Vary the effective pipe length L

Fine Control

Frequency Control by Mode Selection (Register)

"Natural Horns" have no Valves

Length is Fixed

Try L \approx 40 inches $f_1 \approx$ 80 Hz Try L \approx 65 inches $f_1 \approx$ 49 Hz

So we try other lengths. With L=65 inches we are in luck. 5 of the harmonics line up with desired notes, more or less

Conical

Changing Register in a Clarinet

Pipes

Opening a hole as marked (plus most of the holes to the right) shortens the Clarinet so as to emit that note, mostly through that hole.

B Trumpet has 3 Valves

With Valves not Pressed, various overtones modes are available, allowing us to play C4, G4, C5, E5, G5, Bb5, C6, but no notes in between. The fundamental cannot be played due to the small tubing diameter.

Chromatic Scale

B Trumpet has 3 Valves

By pressing valves 1, 2 or 3 and blowing at the right frequencies, we can access Gb4, F4 and E4 in the 3rd harmonic register.

B Trumpet has 3 Valves

By pressing combinations of valves 1, 2 or 3 and blowing at the right frequencies, we can access Eb4, D4 and dB4 in 3rd^d harmonic register. Likewise we can fill in all the missing notes in the higher registers up to at least Bb5

B Trumpet has 3 Valves

Lowest possible true note: F#3 (185 Hz)

Aerophone Instruments

Three main problems:

- 1. Excitation HARD
 - How to get the pipe resonating
- 2. Frequency Control MEDIUM
 - Playing desired notes
- 3. Getting Sound Out **EASY**
 - Resonances are *already*
 - sound waves

pipes

2/25/20

Accordion

Getty Images/Senon Watson

A musical instrument the whole of which vibrates

to produce a sound when struck, shaken, or scraped, such as a bell, gong, xylophone.

"MARIMBA BAR" MODE

Simple case: Rectangular bar in Fundamental Transverse mode.

110

Marimba: Shaping the Bars

Fundamental f_1 2^{nd} Mode $f_2 = 4 f_1$ 3^{nd} Mode $f_3 = 10 f_1$ 2C2 C6 C2 is 23.19" long, 3.73" wide, 1.5" thick C7 is 7.72" long, 1.60" wide, 0.75" thick C4 is middle C

Originally (late 1800's in meso-America), bars were rectangular. Later, esp. in professional instruments, bars were modified on the bottom to tune higher modes to integer multiples of f1. Namely, usually 4th and 10th harmonics.

Torsional Modes f_{T}

Torsional (twist) modes are also used, and can be tuned to the 2nd harmonic of the fundamental.

Marimba: Shaping the Bars

Smithsonian Folkways Recordings *Cobán* (2007) Recorded in Guatemala City

 2^{nd} Mode $f_2 = 4 f_1$

 3^{nd} Mode $f_3 = 10 f_1$ Ο 0 0

Torsional Modes f_{T}

 \mathbf{O}

 \mathbf{O}

Balinese Gamelan Music 🧃

Gangsa Wetallophones

Bronze bars have trapezoidal crosssection, and are curved longitudinally. There is no attempt to control overtone frequencies, the pattern of which varies from bar to bar and instrument to instrument.

Balinese Gamelan Music

Gangsa Wetallophones

b)

a)

C)

d

Some examples of mode patterns of vibration measured on some bars similar to these, using laser velocimetry. Black lines are nodes, colored anti-nodes. (*a*) a high order transverse mode, (*b*) a torsional mode, (*c*) and (*d*) some weird unexplained modes.

Molly Jones et al, JASA 2010

2/2____