

Ocarina (Helmholtz Resonator) Lena Leclaire 2012

Legend of Zelda Medley

Sound of Music How It Works

Session 2
Resonance: Building Musical Sounds

OLLI at Illinois Spring 2020

D. H. Tracy

Course Outline

- 1. Building Blocks: Some basic concepts
- 2. Resonance: Building Musical Sounds
- 3. Hearing and the Ear
- 4. Musical Scales
- 5. Musical Instruments
- 6. Singing and Musical Notation
- 7. Harmony and Dissonance; Chords
- 8. Combining the Elements of Music

Visual Analyzer Demo

Whistle

Sound As Compression Waves

Simple Harmonic Oscillator

Imgur.com

James Dodd: You-Tube

Tuning Fork

Slo-Motion Video

Michigan Tech YouTube 9/11/2014

Resonators can be excited by well-timed nudges

How can we make Sine Waves?

Simple Harmonic Oscillators do it

• Electronics can also do it

Helmholtz Resonators

Helmholtz Resonators

Simple Harmonic Oscillator

Helmholtz Resonator

147 Hz Resonance

Ever experience a Whump-Whump in your car when a rear window is cracked open?

Ever experience a Whump-Whump in your car when a rear window is cracked open?

Prelude in C Major (Bach): Brian of the LDS [Liahona.net]

2 **Traveling** Waves Combine... To Form a **Standing** Wave

Standing Waves in Air

Q: How Do We Make Standing Waves?

A: Reflections at a Boundary

Q: How Do We Make Standing Waves?

A: Reflections at a Boundary

Reflection is **not** inverted!

29

D Russell Penn State

Q: How Do We Make Standing Waves?

A: Reflections at a Boundary

Reflection is **not** inverted!

The Monochord

Frequency f depends on Length L, Tension Force T, and String Mass/length μ :

•
$$f_0 \propto 1/L$$

• $f_0 \propto \sqrt{T}$ • $f_0 \propto 1/\sqrt{\mu}$

inversely proportional to length

proportional to square root of tension

inversely proportional to square root of mass per unit length ('fatness')

Possible Pure String Modes

Try to Launch the Fundamental Mode:

Sine shape

We could carefully pull the string into a half-sine wave and then suddenly let it go....

Try to Launch the Fundamental Mode:

Sine shape

We could carefully pull the string into a half-sine wave and then suddenly let it go....

But we actually pluck a triangle ...

Try to Launch the Fundamental Mode:

Plucked String in Slo-Mo

Dan Russell, Kettering/Penn State (2011)

Many modes superimposed!

The First Electric Monochord?

Yuri Landman (YouTube 2011)

Tristan Andreas (YouTube 2012)

The Monochord

8 foot Electric Monochord Demo

Organ Pipe – One Closed End

Air Displacement

Fundamental Mode

$$L = \lambda/4$$

$$L = (3/4) \lambda$$

$$L = (5/4) \lambda$$

Standing Sound Waves in the Pipe

Illustration of Wave Reflection at Open End of Pipe

(Animation)

Open
Organ
Pipe:
9th
Harmonic

Resonant Cavities: Augmenting Sounds

Helmholtz Resonators

- Mainly has fundamental resonance
- Typically lower frequency than a pipe of similar length

Irregular Resonators

Non-uniform Pipe

- Overtones not integer multiples unless conical
- Example: Saxophone

Closed vs. Open Pipe (Pressure Modes)

Open Pipe ≈5.6 ft

Demo

Closed Pipe ≈5.6 ft

Demo

Open Pipe (Bent 4.7ft)

Demo: Not Carried Out

This is as far as we got.....

Air Column Instrument Examples

Air Column Instrument Examples

What About Timbre?

Comparison of Standing Wave Modes

More Complex Resonators

Common Characteristic:

Modes are generally *not* harmonics of Fundamental

Singing Prayer Bowl

Resonant Vibrational Modes of a Wine Glass

Benjamin Franklin's Glass Harmonica (1761)

Stick/Slip on rotating glass bowls

Thomas Bloch, Paris Music Museum 2007

Great Paul Bell St. Paul's Cathedral

1882, 17 tons

Apparent Frequency:

317 Hz

Sound of Music 2 67

Vibrating Bars

 $2.76 f_{\rm o}$

5.40 *f*_o

 $8.93 f_0$

Dan Russell (Penn State)

Open University [GB]

Not anywhere near harmonic!

Sound of Music 2

P iP

Drumheads: Two Dimensional Membranes

Fundamental Mode of a Drumhead (0,1)

D Russell Penn State

The (0,2) Drumhead Mode

D Russell Penn State

D Russell Penn State

More Drumhead Modes

What you're hearing...

Measured Sound Spectrum of 12" Tom Drum

Room Modes

Course Outline

- 1. Building Blocks: Some basic concepts
- 2. Resonance: Building Musical Sounds
- 3. Hearing and the Ear
- 4. Musical Scales
- 5. Musical Instruments
- 6. Singing and Musical Notation
- 7. Harmony and Dissonance; Chords
- 8. Combining the Elements of Music